Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Sep 16:853:186-94.
doi: 10.1111/j.1749-6632.1998.tb08266.x.

Direct spectroscopic detection of molecular dynamics and interactions of the calcium pump and phospholamban

Affiliations
Review

Direct spectroscopic detection of molecular dynamics and interactions of the calcium pump and phospholamban

D D Thomas et al. Ann N Y Acad Sci. .

Abstract

In order to test molecular models of cardiac calcium transport regulation, we have used spectroscopy to probe the structures, dynamics, and interactions of the Ca pump (Ca-ATPase) and phospholamban (PLB) in cardiac sarcoplasmic reticulum (SR) and in reconstituted membranes. Electron paramagnetic resonance (EPR) and phosphorescence of probes bound to the Ca pump show that the activity of the pump is quite sensitive to its oligomeric interactions. In cardiac SR, PLB aggregates and inhibits the pump, and both effects are reversed by PLB phosphorylation. Previous analyses of PLB's oligomeric state were only in detergent solutions, so we used EPR and fluorescence to determine the oligomeric structure of PLB in its native state in lipid bilayers. Wild-type PLB is primarily oligomeric in the membrane, while the mutant L37A-PLB is monomeric. For both proteins, phosphorylation shifts the dynamic monomer-oligomer equilibrium toward oligomers, and induces a similar structural change, as indicated by tyrosine fluorescence; yet L37A-PLB is more effective than wild-type PLB in inhibiting and aggregating the pump. Fluorescence energy transfer shows that the Ca pump increases the fraction of monomeric PLB, indicating that the pump preferentially binds monomeric PLB. These results support a reciprocal aggregation model for Ca pump regulation, in which the Ca pump is aggregated and inhibited by association with PLB monomers, and phosphorylation of PLB reverses these effects while decreasing the concentration of PLB monomers. To investigate the structure of the PLB pentamer in more detail, we measured the reactivities of cysteine residues in the transmembrane domain of PLB, and recorded EPR spectra of spin labels attached to these sites. These results support an atomic structural model, based on molecular dynamics simulations and mutagenesis studies, in which the PLB pentamer is stabilized by a leucine-isoleucine zipper within the transmembrane domain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources