Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;13(9):633-6.
doi: 10.1089/end.1999.13.633.

Hyperoxaluria and urolithiasis in young children: an atypical presentation

Affiliations

Hyperoxaluria and urolithiasis in young children: an atypical presentation

C G Monico et al. J Endourol. 1999 Nov.

Abstract

Urolithiasis is uncommon in adolescence and rare in early childhood. In pediatric populations, congenital urinary tract anomalies associated with stasis and infection, idiopathic urolithiasis (adolescents), and nephrocalcinosis (premature infants) account for the majority of urolithiasis patients. Inborn errors of metabolism, such as the primary hyperoxalurias, are rare causes of urolithiasis in childhood. We report six children (mean age at symptom onset 1.3 years; range 0.32-4.1 years) with moderate hyperoxaluria (mean 1.10 +/- 0.58 mmoL/1.73m2 per day; range 0.69-2.19 mmoL/1.73m2 per day). Urolithiasis was present in four. Stones from two children were comprised of calcium oxalate dihydrate. Calcium oxalate crystalluria was seen in two of the patients. Findings included a mean urine calcium concentration of 6.61 +/- 2.28 mg/kg per day, urine citrate of 925.5 +/- 291.29 mg/g of creatinine per day, and mean renal clearance of 99.83 +/- 23.27 mL/min. All children were born full term, none was receiving diuretics, and none had recurrent urinary tract infections. Secondary causes of hyperoxaluria, including dietary oxalate excess, pyridoxine deficiency, and malabsorption, were excluded. Urine glycolate and glycerate were normal in all patients. In one hyperoxaluric member of each sibship, hepatic alanine-glyoxylate aminotransferase and D-glycerate dehydrogenase/glyoxylate reductase activity were normal. The clinical and biochemical features of these children are unlike those in previously recognized hyperoxaluric states. Thus, our description of a separate hyperoxaluric entity, referred to as unclassified hyperoxaluria.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources