Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Nov 27;848(1-2):78-89.
doi: 10.1016/s0006-8993(99)01978-2.

Cholecystokinin/opioid interactions

Affiliations
Review

Cholecystokinin/opioid interactions

Z Wiesenfeld-Hallin et al. Brain Res. .

Abstract

Cholecystokinin (CCK) acts as an anti-opioid peptide. The mechanisms of CCK-opioid interaction under normal and pathological conditions were examined with various techniques. Nerve injury induces upregulation of CCK mRNA and CCK2 receptors in sensory neurons. The involvement of CCK in spinal nociception in normal and axotomized rats was examined. The CCK2 receptor antagonist CI-988 did not reduce spinal hyperexcitability following repetitive C-fiber stimulation in normal or axotomized rats, suggesting that CCK is probably not released from injured primary afferents. With in vivo microdialysis intravenous (i.v.) or intrathecal (i.t.) morphine increased the extracellular level of CCK in the dorsal horn in a naloxone reversible manner. Morphine also released CCK after axotomy, but not during carrageenan-induced inflammation. In contrast, K(+)-stimulation failed to increase extracellular levels of CCK in axotomized rats, but did so in inflamed rats. Double-coloured immunofluorescence technique revealed partial co-localization between CCK-like immunoreactivity (LI) and mu-opioid receptor (MOR)-LI in superficial dorsal horn neurons. The presence of MOR in CCK containing neurons suggests a possible direct influence of opioids on CCK release in the spinal cord. Axotomy, but not inflammation, induced a moderate decrease in CCK- and MOR-LI in the dorsal horn. I.v. morphine further temporarily reduced CCK- and MOR-LIs in axotomized, but not in normal or inflamed, rats. While the effect of morphine on CCK-LI can be interpreted as the result of increased CCK release, the effect on MOR-LI may be related to changes in the microenvironment of the dorsal horn induced by nerve injury.

PubMed Disclaimer

Publication types

LinkOut - more resources