Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;82(6):1764-7.

Matrix Gla protein synthesis and gamma-carboxylation in the aortic vessel wall and proliferating vascular smooth muscle cells--a cell system which resembles the system in bone cells

Affiliations
  • PMID: 10613667

Matrix Gla protein synthesis and gamma-carboxylation in the aortic vessel wall and proliferating vascular smooth muscle cells--a cell system which resembles the system in bone cells

R Wallin et al. Thromb Haemost. 1999 Dec.

Abstract

Matrix GLA protein (MGP) is an inhibitor of calcification in the arterial wall and its activity is dependent upon vitamin K-dependent gamma-carboxylation. This modification is carried out by a warfarin sensitive enzyme system that converts specific Glu residues to gamma-carboxyglutamic acid (GLA) residues. Recent studies have demonstrated that the gamma-carboxylation system in the arterial wall, in contrast to that in the liver, is unable to use vitamin K as an antidote to warfarin. By use of immunohistochemistry we demonstrate that MGP is expressed in the arterial wall and immunocytochemistry localized the MGP precursors to the endoplasmic reticulum in vascular smooth muscle cells. Resting smooth vascular muscle cells in the aortic wall and proliferating cells from explants of the aorta have all the enzymes needed for gamma-carboxylation of MGP. However, when compared to the liver system, expression of the enzymes of the gamma-carboxylation system in vascular smooth muscle cells is different. Of particular interest is the finding that the specific activity of the warfarin sensitive enzyme vitamin K epoxide reductase is 3-fold higher in vascular smooth muscle cells than in liver. DT-diaphorase, which catalyses the antidotal pathway for vitamin K reduction in liver, is 100-fold less active in resting vascular smooth muscle cells than in liver. Data obtained from an in vitro gamma-carboxylation system suggest that the antidotal pathway catalyzed by DT-diaphorase in the vessel wall is unable to provide the carboxylase with enough reduced vitamin K to trigger gamma-carboxylation of MGP. This finding provides an explanation to the inability of vitamin K to work as an antidote to warfarin intoxication of the arterial wall. Therefore the vitamin K dependent gamma-carboxylation system in the arterial wall share a common feature with the system in bone cells by being unable to utilize vitamin K as an antidote.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources