Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan;43(1):22-32.
doi: 10.1002/(SICI)1520-6327(200001)43:1<22::AID-ARCH4>3.0.CO;2-U.

Varied effects of 1-octanol on gap junctional communication between ovarian epithelial cells and oocytes of Oncopeltus fasciatus, Hyalophora cecropia, and Drosophila melanogaster

Affiliations

Varied effects of 1-octanol on gap junctional communication between ovarian epithelial cells and oocytes of Oncopeltus fasciatus, Hyalophora cecropia, and Drosophila melanogaster

E L Adler et al. Arch Insect Biochem Physiol. 2000 Jan.

Abstract

In insect gap junctions, species-specific differences occur in response to the purported gap junction uncoupling agent, 1-octanol. Changes in gap junctional communication between oocytes and their epithelial cells following treatment with 1-octanol were assayed in Oncopeltus fasciatus (the milkweed bug), Hyalophora cecropia (the American silk moth), and Drosophila melanogaster. In all three species, microinjection of untreated control follicles with Lucifer yellow CH revealed extensive dye coupling among epithelial cells and between epithelial cells and their oocytes. Also for all three species, treatment with octanol appeared to completely block dye coupling and increase oocyte input resistance. The effect on electrical coupling varied. In Drosophila, octanol diminished the electrical coupling from 64% (0.64 coupling coefficient) in controls to 53% in treated follicles. In Hyalophora, the coupling ratio remained the same following treatment. In Oncopeltus, octanol actually increased the electrical coupling ratio from 84% in controls to 94% in treated follicles. While 0.5 mM octanol left some Oncopeltus epithelial cells dye coupled to the oocyte, the electrical coupling ratio was increased slightly more by this concentration than by 1 or 5 mM octanol solutions, although the differences were not significant. While input resistance (R(o )) increased in all three following treatment with octanol, there was considerable difference in the magnitude of the response. Average oocyte R(o ) for Oncopeltus increased the least of the three species, rising from 196-240 kOhm. Both Hyalophora, with a nearly fourfold increase from 230-900 kOhm or more, and Drosophila, with a twofold increase from 701 kOhm to over 1.2 MegOhm showed much larger changes. Results shown here indicate that insect gap junctions have more varied responses to this common gap junction antagonist than have been reported for their vertebrate counterparts. Arch.

PubMed Disclaimer

LinkOut - more resources