Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema
- PMID: 10616089
- DOI: 10.3171/jns.2000.92.1.0108
Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema
Abstract
Object: The proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNFalpha) are produced intracerebrally in brain disorders such as trauma, ischemia, meningitis, and multiple sclerosis. This investigation was undertaken to analyze the effect of intracerebral administration of IL-1beta and TNFalpha on inflammatory response, cell death, and edema development.
Methods: Intracerebral microinjections of these cytokines were administered to rats. The animals were killed 24 or 72 hours after the injections, and their brains were analyzed by using deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) with digoxigenin-labeled deoxyuridine triphosphate, immunohistochemical studies, and brain-specific gravity measurement. The IL-1beta induced a transient inflammatory response (p < 0.001) and TUNEL staining (p < 0.001), indicating cell death, in intrinsic central nervous system (CNS) cells and infiltrating inflammatory cells. In 73.8+/-6.77% of the TUNEL-positive cells, small, fragmented nuclei were found. All TUNEL-positive cells expressed the proapoptotic gene Bax, and 69.6+/-4.6% of the TUNEL-positive cells expressed the antiapoptotic gene Bcl-2; the Bax expression was stronger than the Bcl-2 expression. Taken together, the data indicate that cell death occurred via the apoptotic pathway. The TNFalpha did not induce inflammation or DNA fragmentation within the analyzed time period. Both IL-1beta (p < 0.001) and TNFalpha (p < 0.01) caused vasogenic edema, as measured by specific gravity and albumin staining. The edematous effect of TNFalpha persisted 72 hours after injection (p < 0.01), whereas the IL-1beta-treated animals had normalized by that time.
Conclusions: Intracerebral inflammation, death of intrinsic CNS cells, and vasogenic edema can be mediated by IL-1beta, and TNFalpha can cause vasogenic edema. Suppression of these cytokines in the clinical setting may improve outcome.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials