Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 7;275(1):248-54.
doi: 10.1074/jbc.275.1.248.

The coiled coil dimerization element of the yeast transcriptional activator Hap1, a Gal4 family member, is dispensable for DNA binding but differentially affects transcriptional activation

Affiliations
Free article

The coiled coil dimerization element of the yeast transcriptional activator Hap1, a Gal4 family member, is dispensable for DNA binding but differentially affects transcriptional activation

A Hach et al. J Biol Chem. .
Free article

Abstract

The heme activator protein Hap1 is a member of the yeast Gal4 family, which consists of transcription factors with a conserved Zn(2)Cys(6) cluster that recognizes a CGG triplet. Many members of the Gal4 family contain a coiled coil dimerization element and bind symmetrically to DNA as homodimers. However, Hap1 possesses two unique properties. First, Hap1 binds asymmetrically to a direct repeat of two CGG triplets. Second, Hap1 binds to two classes of DNA elements, UAS1/CYC1 and UAS/CYC7, and permits differential transcriptional activation at these sites. Here we determined the residues of the Hap1 dimerization domain critical for DNA binding and differential transcriptional activation. We found that the Hap1 dimerization domain is composed of functionally redundant elements that can substitute each other in DNA binding and transcriptional activation. Remarkably, deletion of the coiled coil dimerization element did not severely diminish DNA binding and transcriptional activation at UAS1/CYC1 but completely abolished transcriptional activation at UAS/CYC7. Furthermore, Ala substitutions in the dimerization element selectively diminished transcriptional activation at UAS/CYC7. These results strongly suggest that the coiled coil dimerization element is responsible for differential transcriptional activation at UAS1/CYC1 and UAS/CYC7 and for making contacts with a putative coactivator or part of the transcription machinery.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources