Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 7;275(1):279-87.
doi: 10.1074/jbc.275.1.279.

Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription

Affiliations
Free article

Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription

B O'Keeffe et al. J Biol Chem. .
Free article

Abstract

Tat activation of HIV-1 transcription is mediated by human transcription elongation factor P-TEFb, which interacts with Tat and phosphorylates the C-terminal domain of RNA polymerase II. The catalytic subunit of the P-TEFb complex, Cdk9, has been shown to interact with cyclin T and several other proteins of unknown identity. Consequently, the exact subunit composition of active P-TEFb has not been determined. Here we report the affinity purification and identification of the Cdk9-associated proteins. In addition to forming a heterodimer with cyclin T1, Cdk9 interacted with the molecular chaperone Hsp70 or a kinase-specific chaperone complex, Hsp90/Cdc37, to form two separate chaperone-Cdk9 complexes. Although the Cdk9/cyclin T1 dimer was exceptionally stable and produced slowly in the cell, free and unprotected Cdk9 appeared to be degraded rapidly. Several lines of evidence indicate the heterodimer of Cdk9/cyclin T1 to be the mature, active form of P-TEFb responsible for phosphorylation of the C-terminal domain of RNA polymerase II interaction with the Tat activation domain, and mediation of Tat activation of HIV-1 transcription. Pharmacological inactivation of Hsp90/Cdc37 function by geldanamycin revealed an essential role for the chaperone-Cdk9 complexes in generation of Cdk9/cyclin T1. Our data suggest a previously unrecognized chaperone-dependent pathway involving the sequential actions of Hsp70 and Hsp90/Cdc37 in the stabilization/folding of Cdk9 as well as the assembly of an active Cdk9/cyclin T1 complex responsible for P-TEFb-mediated Tat transactivation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources