Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 7;275(1):312-21.
doi: 10.1074/jbc.275.1.312.

Kinetics of T-cell receptor binding by bivalent HLA-DR. Peptide complexes that activate antigen-specific human T-cells

Affiliations
Free article

Kinetics of T-cell receptor binding by bivalent HLA-DR. Peptide complexes that activate antigen-specific human T-cells

H Appel et al. J Biol Chem. .
Free article

Abstract

Monovalent major histocompatibility complex-peptide complexes dissociate within seconds from the T-cell receptor (TCR), indicating that dimerization/multimerization may be important during early stages of T-cell activation. Soluble bivalent HLA-DR2.myelin basic protein (MBP) peptide complexes were expressed by replacing the F(ab) arms of an IgG2a antibody with HLA-DR2.MBP peptide complexes. The binding of bivalent HLA-DR2.peptide complexes to recombinant TCR was examined by surface plasmon resonance. The bivalent nature greatly enhanced TCR binding and slowed dissociation from the TCR, with a t((1)/(2)) of 2.1 to 4.6 min. Soluble bivalent HLA-DR2.MBP peptide complexes activated antigen-specific T-cells in the absence of antigen presenting cells. In contrast, soluble antibodies to the TCR.CD3 complex were ineffective, indicating that they failed to induce an active TCR dimer. TCR/CD3 antibodies induced T-cell proliferation when bound by antigen presenting cells that expressed Fc receptors. In the presence of dendritic cells, bivalent HLA-DR2. MBP peptide complexes induced T-cell activation at >100-fold lower concentrations than TCR/CD3 antibodies and were also superior to peptide or antigen. These results demonstrate that bivalent HLA-DR. peptide complexes represent effective ligands for activation of the TCR. The data support a role for TCR dimerization in early TCR signaling and kinetic proofreading.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources