Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 15;345 Pt 2(Pt 2):357-63.

Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors

Affiliations

Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors

C E Adkins et al. Biochem J. .

Abstract

InsP(3) binding to type-1, but not type-3, InsP(3) receptors is inhibited by calmodulin in a Ca(2+)-independent fashion [Cardy and Taylor (1998) Biochem. J. 334, 447-455], and Ca(2+) mobilization by type-1 InsP(3) receptors of cerebellum is inhibited by calmodulin [Patel, Morris, Adkins, O'Beirne and Taylor (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 11627-11632]. Using cell types expressing predominantly type-1, -2 or -3 InsP(3) receptors, we show that InsP(3)-evoked Ca(2+) mobilization from each is similarly inhibited by calmodulin. In SH-SY5Y cells, which express largely type-1 receptors, calmodulin (IC(50) approximately 15 microM) inhibited InsP(3)-evoked Ca(2+) release only in the presence of Ca(2+). The inhibition was unaffected by calcineurin inhibitors. The effect of calmodulin did not result from enhanced metabolism of InsP(3) because calmodulin also decreased the sensitivity of the Ca(2+) stores to adenophostin A, a non-metabolizable InsP(3)-receptor agonist. Protein kinase A-catalysed phosphorylation of type-1 InsP(3) receptors was unaffected by Ca(2+)-calmodulin. Using a scintillation proximity assay to measure (125)I-calmodulin binding to glutathione S-transferase-fusion proteins, we identified two regions of the type-1 InsP(3) receptor (cyt1, residues -6 to 159; and cyt11, residues 1499-1649) that bound (125)I-calmodulin. The higher-affinity site (cyt11) was also photoaffinity labelled with N-hydroxysuccinimidyl-4-azidobenzoate (HSAB)-calmodulin. We speculate that Ca(2+)-independent binding of calmodulin to a site within the first 159 residues of the type-1 InsP(3) receptor inhibits InsP(3) binding and may thereby regulate the kinetics of Ca(2+) release. Ca(2+)-dependent inhibition of Ca(2+) release by calmodulin is mediated by a different site: it may reside on an accessory protein that associates with all three receptor subtypes, or Ca(2+)-calmodulin binding to a site lying between residues 1499 and 1649 of the type-1 receptor may inhibit Ca(2+) release from any tetrameric receptor that includes a type-1 subunit.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11627-32 - PubMed
    1. Cell. 1996 Mar 8;84(5):745-55 - PubMed
    1. Biochem J. 1997 Dec 15;328 ( Pt 3):785-93 - PubMed
    1. Biochemistry. 1998 Aug 18;37(33):11524-33 - PubMed
    1. Biochem J. 1998 Sep 1;334 ( Pt 2):447-55 - PubMed

Publication types

MeSH terms