Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Fall;12(3):151-60.
doi: 10.1089/jam.1999.12.151.

Advances in metered dose inhaler technology with the development of a chlorofluorocarbon-free drug delivery system

Affiliations
Review

Advances in metered dose inhaler technology with the development of a chlorofluorocarbon-free drug delivery system

D L Ross et al. J Aerosol Med. 1999 Fall.

Abstract

The impending phaseout of chlorofluorocarbon (CFC)-containing metered dose inhalers (MDIs) has challenged the pharmaceutical industry to rethink and redesign many components of the technology involved in delivering asthma medication to the lungs. Along with the emergence of the first formulation using the nonozone-depleting propellant, hydrofluoroalkane (HFA) 134a to replace CFC propellants, advances in drug delivery technology have improved the performance characteristics of the MDI itself. Although MDIs have remained the mainstay of asthma therapy for 40 years, MDI technology still presents challenges. Some of the shortcomings of existing CFC MDIs affect the reliability of dosing. These challenges have been addressed in the development of the first CFC-free beta-agonist for the treatment of asthma. Airomir CFC-free (salbutamol sulfate; 3M Pharmaceuticals, St. Paul, MN), which is currently available in over 30 countries and was recently approved in the United States (Proventil HFA; Schering-Plough, Madison, NJ), incorporates numerous design and technological improvements which together with the introduction of CFC-free propellants mark the beginning of the next generation of asthma therapy. Although the new generation of CFC-free MDIs incorporates several improvements in dose reproducibility, these changes should be virtually transparent to the patient switching from a CFC MDI to a CFC-free MDI. What may be noticeable is a "softer puff," which is the result of valve and actuator redesign. The taste of the new CFC-free product may also be a little different yet totally acceptable to users.

PubMed Disclaimer

LinkOut - more resources