Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 10;254(1):153-62.
doi: 10.1006/excr.1999.4742.

B-myb alters the response of myeloid precursor cells to G-CSF

Affiliations

B-myb alters the response of myeloid precursor cells to G-CSF

A Engelhard et al. Exp Cell Res. .

Abstract

The human B-myb gene encodes a cell cycle-regulated DNA-binding phosphoprotein which functions as a transcription factor with an important role in cell cycle progression, survival, and differentiation. Recently, it has been demonstrated that ectopic murine B-myb expression blocked the ability of 32Dcl3 cells to proliferate in response to granulocyte colony-stimulating factor (G-CSF) and accelerated the induction of terminal differentiation. In contrast, we report that while 32Dcl3 cells overexpressing human B-myb do display some markers of myeloid differentiation earlier than parental cells, including the expression of myeloperoxidase mRNA and the appearance of band myelocytes in G-CSF-induced cultures, the induction of late markers of differentiation is inhibited. The expression of lactoferrin mRNA is absent and the appearance of terminally differentiated polymorphonuclear cells is severely impaired in B-myb-expressing 32Dcl3 cells. Furthermore, continuous exposure to G-CSF results in the outgrowth of a culture which expresses increased levels of B-myb RNA and is dependent on G-CSF for proliferation while retaining responsiveness to interleukin-3. These data suggest that the B-myb gene is involved in early transcriptional events during myeloid differentiation, but that its expression prevents terminal differentiation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources