Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 7;295(1):117-25.
doi: 10.1006/jmbi.1999.3322.

Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property

Affiliations

Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property

F A Kovacs et al. J Mol Biol. .

Abstract

Solid-state NMR has been used to study the influence of lipid bilayer hydrophobic thickness on the tilt of a peptide (M2-TMP) representing the transmembrane portion of the M2 protein from influenza A. Using anisotropic (15)N chemical shifts as orientational constraints, single-site isotopically labeled M2-TMPs were studied in hydrated dioleoylphosphatidylcholine (DOPC) and dimyristoylphosphatidylcholine (DMPC) lipid bilayers oriented between thin glass plates. These chemical shifts provide orientational information for the molecular frame with respect to the magnetic field in the laboratory frame. When modeled as a uniform ideal alpha-helix, M2-TMP has a tilt of 37(+/-3) degrees in DMPC and 33(+/-3) degrees in DOPC with respect to the bilayer normal in these lipid environments. The difference in helix tilt between the two environments appears to be small. This lack of a substantial change in tilt further suggests that significant interactions occur between the helices, as in an oligomeric state, to prevent a change in tilt in thicker lipid bilayers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources