Mechanism of action and identification of Asp242 as the catalytic nucleophile of Vibrio furnisii N-acetyl-beta-D-glucosaminidase using 2-acetamido-2-deoxy-5-fluoro-alpha-L-idopyranosyl fluoride
- PMID: 10625486
- DOI: 10.1021/bi991958d
Mechanism of action and identification of Asp242 as the catalytic nucleophile of Vibrio furnisii N-acetyl-beta-D-glucosaminidase using 2-acetamido-2-deoxy-5-fluoro-alpha-L-idopyranosyl fluoride
Abstract
The novel mechanism-based reagent 2-acetamido-2-deoxy-5-fluoro-alpha-L-idopyranosykl fluoride has been synthesized, and the kinetic parameters K(M) = 0.23 mM and K(CAT)= 0.55 min(-1) for its hydrolysis by vibrio furnisi beta-N-acetylglucosaminidase (ExoII) HAVE been determined. Investigation of mixtures of enzyme with this slow substrate by electrospray mass spectrometry revealed a high steady-state population of the 2-acetamido-2-deoxy-5-fluoro-beta-L-idopyranosyl-enzyme, indicating that the hydrolytic mechanism of ExoII involves the formation and rate-determining hydrolysis of a glycosyl-enzyme intermediate. Analysis of a peptic digest of the glycosyl-enzyme by HPLC/ESMS/MS in the netural-loss mode permitted identification of a peptide bearing the 5-fluoro-sugar moiety. Tandem MS sequencing of the labeled peptide, in conjuction with multiple sequence alignmentsS of family 3 members, allowed the identification of ASP242 as the catalytic nucleophile within the sequence IVFSDDLSM.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
