Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 14;275(2):895-900.
doi: 10.1074/jbc.275.2.895.

A NAD(P)H oxidase isolated from the archaeon Sulfolobus solfataricus is not homologous with another NADH oxidase present in the same microorganism. Biochemical characterization of the enzyme and cloning of the encoding gene

Affiliations
Free article

A NAD(P)H oxidase isolated from the archaeon Sulfolobus solfataricus is not homologous with another NADH oxidase present in the same microorganism. Biochemical characterization of the enzyme and cloning of the encoding gene

P Arcari et al. J Biol Chem. .
Free article

Abstract

A NAD(P)H oxidase has been isolated from the archaeon Sulfolobus solfataricus. The enzyme is a homodimer with M(r) 38,000 per subunit (SsNOX38) containing 1 FAD molecule/subunit. It oxidizes NADH and, less efficiently, NADPH with the formation of hydrogen peroxide. The enzyme was resistant against chemical and physical denaturating agents. The temperature for its half-denaturation was 93 and 75 degrees C in the absence or presence, respectively, of 8 M urea. The enzyme did not show any reductase activity. The SsNOX38 encoding gene was cloned and sequenced. It accounted for a product of 36.5 kDa. The translated amino acid sequence was made of 332 residues containing two putative betaalphabeta-fold regions, typical of NAD- and FAD-binding proteins. The primary structure of SsNOX38 did not show any homology with the N-terminal amino acid sequence of a NADH oxidase previously isolated from S. solfataricus (SsNOX35) (Masullo, M., Raimo, G., Dello Russo, A., Bocchini, V. and Bannister, J. V. (1996) Biotechnol. Appl. Biochem. 23, 47-54). Conversely, it showed 40% sequence identity with a putative thioredoxin reductase from Bacillus subtilis, but it did not contain cysteines, which are essential for the activity of the reductase.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources