Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;18(10):938-45.
doi: 10.1109/42.811277.

An adaptive segmentation algorithm for time-of-flight MRA data

Affiliations

An adaptive segmentation algorithm for time-of-flight MRA data

D L Wilson et al. IEEE Trans Med Imaging. 1999 Oct.

Abstract

A three-dimensional (3-D) representation of cerebral vessel morphology is essential for neuroradiologists treating cerebral aneurysms. However, current imaging techniques cannot provide such a representation. Slices of MR angiography (MRA) data can only give two-dimensional (2-D) descriptions and ambiguities of aneurysm position and size arising in X-ray projection images can often be intractable. To overcome these problems, we have established a new automatic statistically based algorithm for extracting the 3-D vessel information from time-of-flight (TOF) MRA data. We introduce distributions for the data, motivated by a physical model of blood flow, that are used in a modified version of the expectation maximization (EM) algorithm. The estimated model parameters are then used to classify statistically the voxels into vessel or other brain tissue classes. The algorithm is adaptive because the model fitting is performed recursively so that classifications are made on local subvolumes of data. We present results from applying our algorithm to several real data sets that contain both artery and aneurysm structures of various sizes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources