Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Dec 30:264:247-64.
doi: 10.1111/j.1749-6632.1975.tb31487.x.

Membrane excitation through voltage-induced aggregation of channel precursors

Membrane excitation through voltage-induced aggregation of channel precursors

P Mueller. Ann N Y Acad Sci. .

Abstract

Electrically excitable lipid bilayers show the same voltage-dependent kinetics as nerve and other excitable cells. In the bilayers the gating process involves the voltage-dependent insertion of channel-forming molecules into the hydrocarbon region and their subsequent aggregation by lateral diffusion into an open "barrel stave channel." This process can account quantitatively for the classical Hodgkin-Huxley kinetics including inactivation as well as for certain kinetic features that lie outside the Hodgkin-Huxley domain. The multi- and single-channel kinetics suggest that both the insertion and the aggregation reate constants are voltage-dependent, and it is argued that a voltage-induced lateral phase separation between the lipids and the channel-forming molecules increases the local concentration of channel precursors and their aggregation rates. Because the observed aggregation rates are faster than those calculated from an upper limit of the diffusion constants and the known average concentration in the lipid phase, it is likely that the channel-formers preaggregate at the membrane surface. The structural characteristics of the channel-formers and the evidence supporting a similar excitation mechanism in nerve are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources