Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Nov;160(1):142-50.
doi: 10.1006/exnr.1999.7201.

Effects of vaginal birth versus caesarean section birth with general anesthesia on blood gases and brain energy metabolism in neonatal rats

Affiliations
Comparative Study

Effects of vaginal birth versus caesarean section birth with general anesthesia on blood gases and brain energy metabolism in neonatal rats

C Vaillancourt et al. Exp Neurol. 1999 Nov.

Abstract

Using a rat model, several laboratories have demonstrated long-term effects of Caesarean section (C-section) birth or of global hypoxia during C-section birth on a variety of central nervous system (CNS) parameters. These studies used C-section delivery from rapidly decapitated dams, to avoid confounding anesthetic effects, or from dams anesthetized with halothane or ether under unspecified conditions. Systemic oxygenation or cerebral energy metabolites in the pups at birth have not been systematically measured in this model. To develop and characterize a C-section model with relevance to the human situation, the present study measured arterial/venous blood gases and pH and brain ATP and lactate, a widely accepted measure of CNS hypoxia, in pups born either vaginally, by C-section from decapitated dams, or by C-section from dams anesthetized with nitrous oxide (N2O) and increasing concentrations of isoflurane under well-defined conditions. Immediately after birth, pups born vaginally, by C-section with maternal decapitation, or by C-section with 2.5% isoflurane showed no group differences in systemic pO2 or pH or brain ATP levels, but pCO2 was elevated in the C-section/2.5% isoflurane group. Pups born by C-section with 3.0, 3.5, or 4.0% isoflurane, showed progressive reductions in blood pO2 and increases in pCO2 and blood pH was reduced with 3.5% isoflurane. Relative to vaginal birth, brain lactate levels were unchanged in pups born by C-section with any concentration (2.5-4.0%) of isoflurane, but reduced in pups born by C-section from decapitated dams. At 1 h (and 4 h) after birth, in both vaginally born controls and the 2.5% isoflurane group, brain lactate fell while blood pO2 and brain ATP remained stable. In the 3.0, 3.5, or 4.0% isoflurane groups, blood gases and pH and brain lactate also normalized to control values. In conclusion, rat neonates show minimal signs of systemic or CNS hypoxia following C-section birth under 2.5% isoflurane with N2O. However, there is a rather narrow window of isoflurane concentrations which produces effective maternal anesthesia without producing respiratory compromise in the neonate. Thus the results indicate that the level of maternal anesthesia employed is an important factor influencing neonatal systemic and CNS oxygenation during C-section birth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources