Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Dec:73:S8-13.
doi: 10.1046/j.1523-1755.1999.07312.x.

Cellular mechanisms of renal osteodystrophy

Affiliations
Free article
Review

Cellular mechanisms of renal osteodystrophy

J A Hoyland et al. Kidney Int Suppl. 1999 Dec.
Free article

Abstract

Renal osteodystrophy affects all patients with end-stage renal failure, resulting in significant skeletal and extra-skeletal morbidity. The patterns of disease seen in bone are the result of changes in calcium, phosphate, parathyroid hormone (PTH), and vitamin D metabolism, as well as the effects of uremia. Standard histological techniques, however, give little insight into the altered biological activity or mechanisms of disease at the cellular level. In order to examine the cellular abnormalities in renal bone disease we have performed a series of in situ hybridization studies to examine renal bone cell expression of genes for PTH receptor (PTHR1), transforming growth factor beta (TGF-beta) and insulin growth factor 1 (IGF-I). PTHR1 mRNA was expressed predominantly by osteoblasts, but also by resorbing osteoclasts, suggesting that these cells may be stimulated directly by PTH. Semi-quantitative analysis of gene expression showed down-regulation of PTHR1 mRNA by osteoblasts in renal bone compared with normal, fracture and Pagetic bone. This may be important in the pathogenesis of skeletal resistance seen in end-stage renal failure, altering the "threshold" at which PTH has its effects on bone cells. TGF-beta and IGF-I mRNA expression was also decreased, suggesting that synthesis of these factors, postulated to be mediators of PTH, is also downregulated.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources