Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2000 Jan;85(1):207-13.
doi: 10.1210/jcem.85.1.6325.

Short-term fasting selectively suppresses leptin pulse mass and 24-hour rhythmic leptin release in healthy midluteal phase women without disturbing leptin pulse frequency or its entropy control (pattern orderliness)

Affiliations
Clinical Trial

Short-term fasting selectively suppresses leptin pulse mass and 24-hour rhythmic leptin release in healthy midluteal phase women without disturbing leptin pulse frequency or its entropy control (pattern orderliness)

M Bergendahl et al. J Clin Endocrinol Metab. 2000 Jan.

Abstract

Nutritional signals strongly regulate neuroendocrine axes, such as those subserving release of LH, GH, and TSH, presumptively in part via the adipocyte-derived neuroactive peptide leptin. In turn, leptin release is controlled by both acute (fasting) and long-term (adipose store) nutrient status. Here, we investigate the neuroendocrine impact of short-term (2.5-day) fasting on leptin release in healthy young women studied in the steroid-replete midluteal phase of the normal menstrual cycle. Eight women each underwent 24-h blood sampling at 10-min intervals during a randomly ordered 2.5-day fasting vs. fed session in separate menstrual cycles. Pulsatile leptin release was quantified by model-free Cluster analysis, the orderliness of leptin patterns by the approximate entropy statistic, and nyctohemeral leptin rhythmicity by cosinor analysis. Mean (24-h) serum leptin concentrations fell by 4.6-fold during fasting; namely, from 15.2+/-2.3 to 3.4+/-0.6 microg/L (P = 0.0007). Cluster analysis identified 13.9+/-1.1 and 14.3+/-1.1 leptin peaks per 24 h in the fed and fasting states (P = NS), and unchanging leptin interpeak intervals (89+/-5.4 vs. 92+/-5.3 min). Leptin peak area declined by 4.2-fold (155+/-21 vs. 37+/-7 area units, P = 0.004), due to a reduction in incremental leptin pulse amplitude (4.4+/-0.7 vs. 1.0+/-0.13 microg/L, P = 0.0011). The cosine amplitude and mesor (mean) of the 24-h leptin rhythm decreased by 4-fold, whereas the acrophase (timing of the nyctohemeral leptin peak) remained fixed. The approximate entropy of leptin release was stable, thus indicating preserved orderliness of leptin release patterns in fasting. Cross-correlation analysis revealed both positive (fed) and negative (fasting) leptin-GH relationships, but no leptin-LH correlations. In summary, short-term (2.5-day) fasting profoundly suppresses 24-h serum leptin concentrations and pulsatile leptin release in the sex steroid-sufficient midluteal phase of healthy women via mechanisms that selectively attenuate leptin pulse area and incremental amplitude. In contrast, the pulse-generating, nyctohemeral phase-determining, and entropy-control mechanisms that govern 24-h leptin release are not altered by acute nutrient restriction at this menstrual phase. Leptin-GH (but not leptin-LH) showed nutrient-dependent positive (fed) and negative (fasting) cross-correlations. Whether similar neuroendocrine mechanisms supervise altered leptin signaling during short-term nutrient restriction in men, children, or postmenopausal women is not known.

PubMed Disclaimer

Publication types

LinkOut - more resources