Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan;20(1):18-26.
doi: 10.1161/01.atv.20.1.18.

Hyperexpression and activation of extracellular signal-regulated kinases (ERK1/2) in atherosclerotic lesions of cholesterol-fed rabbits

Affiliations

Hyperexpression and activation of extracellular signal-regulated kinases (ERK1/2) in atherosclerotic lesions of cholesterol-fed rabbits

Y Hu et al. Arterioscler Thromb Vasc Biol. 2000 Jan.

Abstract

A hallmark of hyperlipidemia-induced atherosclerosis is altered gene expression that initiates cell proliferation and (de)differentiation in the intima of the arterial wall. The molecular signaling that mediates this process in vivo has yet to be identified. Extracellular signal-regulated kinases (ERKs) are thought to play a pivotal role in transmitting transmembrane signals required for cell proliferation in vitro. The present studies were designed to investigate the activity, abundance, and localization of ERK1/2 in atherosclerotic lesions of cholesterol-fed rabbits. Immunofluorescence analysis revealed abundant and heterogeneous distribution of ERK1/2, mainly localized in the cap and basal regions of atheromas. A population of ERK-enriched cells was identified as alpha-actin-positive smooth muscle cells (SMCs). ERK1 and 2 were heavily phosphorylated on tyrosyl residues and coexpressed with proliferating cell nuclear antigen in atherosclerotic lesions. ERK1/2 protein levels in protein extracts from atherosclerotic lesions were 2- to 3-fold higher than the vessels of chow-fed rabbits, and their activities were elevated 3- to 5-fold over those of the normal vessel. SMCs derived from atherosclerotic lesions had increased migratory/proliferative ability and higher ERK activity in response to LDL stimulation compared with cells from the normal vessel. Inhibition of ERK activation by PD98059, a specific inhibitor of mitogen-activated protein kinase kinases (MEK1/2), abrogated LDL-induced SMC proliferation in vitro. Taken together, our findings support the proposition that persistent activation and hyperexpression of ERK1/2 may be a critical element to initiate and perpetuate cell proliferation during the development of atherosclerosis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources