Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Jan;83(1):528-36.
doi: 10.1152/jn.2000.83.1.528.

Cortical activity in precision- versus power-grip tasks: an fMRI study

Affiliations
Free article
Comparative Study

Cortical activity in precision- versus power-grip tasks: an fMRI study

H H Ehrsson et al. J Neurophysiol. 2000 Jan.
Free article

Abstract

Most manual grips can be divided in precision and power grips on the basis of phylogenetic and functional considerations. We used functional magnetic resonance imaging to compare human brain activity during force production by the right hand when subjects used a precision grip and a power grip. During the precision-grip task, subjects applied fine grip forces between the tips of the index finger and the thumb. During the power-grip task, subjects squeezed a cylindrical object using all digits in a palmar opposition grasp. The activity recorded in the primary sensory and motor cortex contralateral to the operating hand was higher when the power grip was applied than when subjects applied force with a precision grip. In contrast, the activity in the ipsilateral ventral premotor area, the rostral cingulate motor area, and at several locations in the posterior parietal and prefrontal cortices was stronger while making the precision grip than during the power grip. The power grip was associated predominately with contralateral left-sided activity, whereas the precision-grip task involved extensive activations in both hemispheres. Thus our findings indicate that in addition to the primary motor cortex, premotor and parietal areas are important for control of fingertip forces during precision grip. Moreover, the ipsilateral hemisphere appears to be strongly engaged in the control of precision-grip tasks performed with the right hand.

PubMed Disclaimer

Publication types

LinkOut - more resources