Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 21;275(3):2003-8.
doi: 10.1074/jbc.275.3.2003.

Oxidative DNA damage by vitamin A and its derivative via superoxide generation

Affiliations
Free article

Oxidative DNA damage by vitamin A and its derivative via superoxide generation

M Murata et al. J Biol Chem. .
Free article

Abstract

Recent intervention studies revealed that beta-carotene supplement to smokers resulted in a higher incidence of lung cancer. However, the causal mechanisms remain to be clarified. We reported here that vitamin A (retinol) and its derivative (retinal) caused cellular DNA cleavage detected by pulsed field gel electrophoresis. Retinol and retinal significantly induced 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in HL-60 cells but not in H(2)O(2)-resistant HP100 cells, suggesting the involvement of H(2)O(2) in cellular DNA damage. Experiments using (32)P-labeled isolated DNA demonstrated that retinol and retinal caused Cu(II)-mediated DNA damage, which was inhibited by catalase. UV-visible spectroscopic and electron spin resonance-trapping studies revealed the generation of superoxide and carbon-centered radicals, respectively. The superoxide generation during autoxidation of retinoids was significantly correlated with the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, although the yield of carbon-centered radicals was not necessarily related to the intensity of DNA damage. These findings suggest that superoxide generated by autoxidation of retinoids was dismutated to H(2)O(2), which was responsible for DNA damage in the presence of endogenous metals. Retinol and retinal have prooxidant abilities, which might lead to carcinogenesis of the supplements of beta-carotene.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources