Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;31(12):2175-89.
doi: 10.1006/jmcc.1999.1044.

Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A(31)P NMR magnetization transfer study of the intact beating rat heart

Affiliations

Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A(31)P NMR magnetization transfer study of the intact beating rat heart

M Spindler et al. J Mol Cell Cardiol. 1999 Dec.

Abstract

To determine whether the decreased contractile performance in diabetic hearts is associated with a reduced energy reserve due to decreased creatine kinase (CK) activity, we measured total CK activity (V(max)) in vitro and CK reaction velocity in vivo using(31)P NMR spectroscopy in isolated perfused rat hearts after 4 and 6 weeks of diabetes. After 4 weeks of diabetes, V(max)decreased by 22% with a larger decrease of CK MB than of CK MM and mitochondrial-CK isoenzymes. There was no further decrease in these parameters after 6 weeks of diabetes. Isovolumic contractile performance of 4 and 6 week diabetic hearts, estimated as rate-pressure product under identical perfusion and loading conditions (EDP set at 6-8 mmHg), was only 50% of that of control. ATP, PCr and total creatine concentrations were not different in control and 4 or 6 weeks diabetic rat hearts. After 4 weeks of diabetes, CK reaction velocity decreased by 22%. This was in proportion to the decline of V(max)and therefore predicted by the rate equation for the CK reaction. However, the further decline in the CK reaction velocity after 6 weeks of diabetes (45%) was greater than that predicted from the CK rate equation (17% decrease), and cannot be explained by substrate control of the enzyme. When hearts were inotropically stimulated by increasing perfusate calcium concentration, CK reaction velocity increased slightly (approximately 15%) in both control and diabetic hearts, thereby maintaining a constant ATP concentration. We conclude that in the diabetic myocardium, the CK reaction velocity decreases but does not limit the availability of high-energy phosphates for contraction over the range of workloads studied. We also conclude that a mechanism(s) in addition to substrate control regulates CK reaction velocity in the 6 week diabetic hearts.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources