Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;27(2):163-9.
doi: 10.1111/j.1574-695X.2000.tb01427.x.

Development of an insect model for the in vivo pathogenicity testing of yeasts

Affiliations
Free article

Development of an insect model for the in vivo pathogenicity testing of yeasts

G Cotter et al. FEMS Immunol Med Microbiol. 2000 Feb.
Free article

Abstract

Conventional in vivo assays to determine the relative pathogenicity of yeast isolates rely upon the use of a range of mammalian species. The purpose of the work presented here was to investigate the possibility of using an insect (Galleria mellonella) as a model system for in vivo pathogenicity testing. The haemolymph of G. mellonella larvae was inoculated with PBS containing different concentrations of stationary phase yeasts of the genus Candida by injection at the last pro-leg. Larvae were incubated at 30 degrees C and monitored over 72 hours. Results indicate that G. mellonella can be killed by the pathogenic yeast Candida albicans and by a range of other Candida species but not to a significant extent by the yeast Saccharomyces cerevisiae. The kill kinetics for larvae inoculated with clinical and laboratory isolates of C. albicans indicate the former class of isolates to be more pathogenic. Differences in the relative pathogenicity of a range of Candida species may be distinguished using G. mellonella as a model. This work indicates that G. mellonella may be employed to give results consistent with data previously obtained using mammals in conventional in vivo pathogenicity testing. Larvae of G. mellonella are inexpensive to culture, easy to manipulate and their use may reduce the need to employ mammals for routine in vivo pathogenicity testing with a concomitant reduction in mammalian suffering.

PubMed Disclaimer

LinkOut - more resources