Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Dec;14(6):469-79.
doi: 10.1177/074873099129001037.

The Goodwin oscillator: on the importance of degradation reactions in the circadian clock

Affiliations
Review

The Goodwin oscillator: on the importance of degradation reactions in the circadian clock

P Ruoff et al. J Biol Rhythms. 1999 Dec.

Abstract

This article focuses on the Goodwin oscillator and related minimal models, which describe negative feedback schemes that are of relevance for the circadian rhythms in Neurospora, Drosophila, and probably also in mammals. The temperature behavior of clock mutants in Neurospora crassa and Drosophila melanogaster are well described by the Goodwin model, at least on a semi-quantitative level. A similar semi-quantitative description has been found for Neurospora crassa phase response curves with respect to moderate temperature pulses, heat shock pulses, and pulses of cycloheximide. A characteristic feature in the Goodwin and related models is that degradation of clock-mRNA and clock protein species plays an important role in the control of the oscillator's period. As predicted by this feature, recent experimental results from Neurospora crassa indicate that the clock (FRQ) protein of the long period mutant frq7 is degraded approximately twice as slow as the corresponding wild-type protein. Quantitative RT-PCR indicates that experimental frq7-mRNA concentrations are significantly higher than wild-type levels. The latter findings cannot be modeled by the Goodwin oscillator. Therefore, a threshold inhibition mechanism of transcription is proposed.

PubMed Disclaimer

Comment in

MeSH terms

LinkOut - more resources