Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 1999 Dec;14(6):569-73.
doi: 10.1177/074873099129000902.

Commentary: models of sleep regulation: successes and continuing challenges

Affiliations
Comment

Commentary: models of sleep regulation: successes and continuing challenges

D J Dijk et al. J Biol Rhythms. 1999 Dec.

Erratum in

  • J Biol Rhythms 2000 Apr;15(2):186

Abstract

Quantitative models have been developed to describe salient aspects of human sleep regulation. The two-process model of sleep regulation and the thermoregulatory model of sleep control highlight the interaction between sleep homeostasis and circadian rhythmicity and the association between sleep and temperature regulation, respectively. These models have been successful and inspiring, but continuing progress remains dependent on rigorous testing of some of their basic assumptions. Whereas it has been established that EEG slow-wave activity is a marker of sleep homeostasis, its causal role in regulating the timing of sleep and wakefulness remains to be demonstrated conclusively. Likewise, the causal role of the temperature regulatory system in sleep timing requires further investigation. In both models, many parameters have yet to be associated with specific physiologic processes. This makes it challenging, at least within the framework of these models, to account for interindividual differences or age-related changes in such features as sleep duration and sleep timing, as well as changes in the phase angle between the sleep-wake cycle and accepted markers of the circadian pacemaker, such as the body temperature or melatonin rhythm. Although the models may describe adequately global sleep patterns and their circadian modulation, detailed modeling of the frequent short awakenings from, and the subsequent transitions back to, sleep, as well as the variation of the propensity to awaken across the ultradian non-REM-REM cycle, is not addressed. Incoporation of these aspects of sleep in mathematical models of sleep regulation may further our understanding of a key aspect of sleep regulation, that is, its timing.

PubMed Disclaimer

Comment on

Publication types

LinkOut - more resources