Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;45(8):1191-202.

Cellular and subcellular distribution of galectin-3 in the epiphyseal cartilage and bone of fetal and neonatal mice

Affiliations
  • PMID: 10643968

Cellular and subcellular distribution of galectin-3 in the epiphyseal cartilage and bone of fetal and neonatal mice

C Colnot et al. Cell Mol Biol (Noisy-le-grand). 1999 Dec.

Abstract

Galectin-3 is a 30 kDa beta-galactoside binding protein that belongs to the galectin family of animal lectins. By immunocytochemistry we show the presence of galectin-3 protein in the differentiated chondrocytes of the epiphyseal plate cartilage of long bones of both fetal and neonatal mice. The highest concentrations of galectin-3 are found in the cytoplasm of mature and early hypertrophic chondrocytes. Very little protein is detected in the late hypertrophic chondrocytes undergoing terminal maturation and cell death. Galectin-3 has also been found in osteoblasts and osteocytes of the woven bone of the metaphysis and the cortical bone of the diaphysis, as well as in osteoclasts and mononuclear cells within bone marrow cavities. Galectin-3 is never detected extracellularly, the protein seems restricted to the cytoplasm of chondrocytes and bone cells, although it is occasionally detected in the nuclei of dense non-hypertrophic chondrocytes in the zone of calcification and in young osteoblasts. The results indicate that galectin-3 is a marker of both chondrogenic and osteogenic cell lineages. They also suggest that galectin-3 could be involved in the process of endochondral bone formation, possibly as a regulator of chondrocyte survival.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources