Animal-vegetal axis patterning mechanisms in the early sea urchin embryo
- PMID: 10644406
- DOI: 10.1006/dbio.1999.9553
Animal-vegetal axis patterning mechanisms in the early sea urchin embryo
Abstract
We discuss recent progress in understanding how cell fates are specified along the animal-vegetal axis of the sea urchin embryo. This process is initiated by cell-autonomous, maternally directed, mechanisms that establish three unique gene-regulatory domains. These domains are defined by distinct sets of vegetalizing (beta-catenin) and animalizing transcription factor (ATF) activities and their region of overlap in the macromeres, which specifies these cells as early mesendoderm. Subsequent signaling among cleavage-stage blastomeres further subdivides fates of macromere progeny to yield major embryonic tissues. Zygotically produced Wnt8 reinforces maternally regulated levels of nuclear beta-catenin in vegetal derivatives to down regulate ATF activity and further promote mesendoderm fates. Signaling through the Notch receptor from the vegetal micromere lineages diverts adjacent mesendoderm to secondary mesenchyme fates. Continued Wnt signaling expands the vegetal domain of beta-catenin's transcriptional regulatory activity and competes with animal signaling factors, including BMP2/4, to specify the endoderm-ectoderm border within veg(1) progeny. This model places new emphasis on the importance of the ratio of maternally regulated vegetal and animal transcription factor activities in initial specification events along the animal-vegetal axis.
Copyright 2000 Academic Press.
Similar articles
-
Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.Genesis. 2004 Jul;39(3):194-205. doi: 10.1002/gene.20045. Genesis. 2004. PMID: 15282746
-
Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.Semin Cell Dev Biol. 1999 Jun;10(3):327-34. doi: 10.1006/scdb.1999.0292. Semin Cell Dev Biol. 1999. PMID: 10441547 Review.
-
TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.Dev Biol. 2000 Jan 15;217(2):230-43. doi: 10.1006/dbio.1999.9551. Dev Biol. 2000. PMID: 10625549
-
Wnt signaling in the early sea urchin embryo.Methods Mol Biol. 2008;469:187-99. doi: 10.1007/978-1-60327-469-2_14. Methods Mol Biol. 2008. PMID: 19109711
-
Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.Curr Top Dev Biol. 2003;53:159-98. doi: 10.1016/s0070-2153(03)53005-8. Curr Top Dev Biol. 2003. PMID: 12509127 Review.
Cited by
-
Regulatory gene networks and the properties of the developmental process.Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1475-80. doi: 10.1073/pnas.0437746100. Epub 2003 Feb 10. Proc Natl Acad Sci U S A. 2003. PMID: 12578984 Free PMC article.
-
An integrated modelling framework from cells to organism based on a cohort of digital embryos.Sci Rep. 2016 Dec 2;6:37438. doi: 10.1038/srep37438. Sci Rep. 2016. PMID: 27910875 Free PMC article.
-
A role for maternal beta-catenin in early mesoderm induction in Xenopus.EMBO J. 2003 Jul 1;22(13):3303-13. doi: 10.1093/emboj/cdg328. EMBO J. 2003. PMID: 12839992 Free PMC article.
-
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.Dev Cell. 2018 May 21;45(4):496-511.e6. doi: 10.1016/j.devcel.2018.04.022. Dev Cell. 2018. PMID: 29787710 Free PMC article.
-
An evolutionary transition of Vasa regulation in echinoderms.Evol Dev. 2009 Sep-Oct;11(5):560-73. doi: 10.1111/j.1525-142X.2009.00362.x. Evol Dev. 2009. PMID: 19754712 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous