Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jan;278(1):F13-28.
doi: 10.1152/ajprenal.2000.278.1.F13.

Structure and function of aquaporin water channels

Affiliations
Free article
Review

Structure and function of aquaporin water channels

A S Verkman et al. Am J Physiol Renal Physiol. 2000 Jan.
Free article

Abstract

The aquaporins (AQPs) are a family of small membrane-spanning proteins (monomer size approximately 30 kDa) that are expressed at plasma membranes in many cells types involved in fluid transport. This review is focused on the molecular structure and function of mammalian aquaporins. Basic features of aquaporin structure have been defined using mutagenesis, epitope tagging, and spectroscopic and freeze-fracture electron microscopy methods. Aquaporins appear to assemble in membranes as homotetramers in which each monomer, consisting of six membrane-spanning alpha-helical domains with cytoplasmically oriented amino and carboxy termini, contains a distinct water pore. Medium-resolution structural analysis by electron cryocrystallography indicated that the six tilted helical segments form a barrel surrounding a central pore-like region that contains additional protein density. Several of the mammalian aquaporins (e.g., AQP1, AQP2, AQP4, and AQP5) appear to be highly selective for the passage of water, whereas others (recently termed aquaglyceroporins) also transport glycerol (e.g., AQP3 and AQP8) and even larger solutes (AQP9). Evidence for possible movement of ions and carbon dioxide through the aquaporins is reviewed here, as well as evidence for direct regulation of aquaporin function by posttranslational modification such as phosphorylation. Important unresolved issues include definition of the molecular pathway through which water and solutes move, the nature of monomer-monomer interactions, and the physiological significance of aquaporin-mediated solute movement. Recent results from knockout mice implicating multiple physiological roles of aquaporins suggest that the aquaporins may be suitable targets for drug discovery by structure-based and/or high-throughput screening strategies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources