Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan 28;275(4):2479-85.
doi: 10.1074/jbc.275.4.2479.

beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4

Affiliations
Free article

beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4

Z J Cheng et al. J Biol Chem. .
Free article

Abstract

The chemokine receptor CXCR4 has recently been shown to be a co-receptor involved in the entry of human immunodeficiency virus type 1 into target cells. This study shows that coexpression of beta-arrestin with CXCR4 in human embryonic kidney 293 cells attenuated chemokine-stimulated G protein activation and inhibition of cAMP production. Truncation of the C-terminal 34 amino acids of CXCR4 (CXCR4-T) abolished the effects of beta-arrestin on CXCR4/G protein signaling, indicating the functional interaction of the receptor C terminus with beta-arrestin. On the other hand, receptor internalization and the subsequent activation of extracellular signal-regulated kinases were significantly promoted by coexpression of beta-arrestin with CXCR4, whereas the C-terminal truncation of CXCR4 did not affect this regulation of beta-arrestin, suggesting that beta-arrestin can functionally interact with CXCR4 with or without the C terminus. Moreover, beta(2)V54D, the dominant inhibitory mutant of beta-arrestin 2, exerted no effects on CXCR4/G protein signaling, but strongly influenced receptor internalization and extracellular signal-regulated kinase activation. Further cross-linking experiments demonstrated that beta-arrestin as well as beta(2)V54D could physically contact both CXCR4 and CXCR4-T. Glutathione S-transferase pull-down assay showed that beta-arrestin was able to bind efficiently in vitro to both the third intracellular loop and the 34-amino acid C terminus of CXCR4. Taken together, our data clearly establish that beta-arrestin can effectively regulate different functions of CXCR4 and that this is mediated through its distinct interactions with the C terminus and other regions including the third loop of CXCR4.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources