Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan;53(1):72-83.
doi: 10.1002/(SICI)1097-0282(200001)53:1<72::AID-BIP7>3.0.CO;2-5.

Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study

Affiliations

Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study

A Troganis et al. Biopolymers. 2000 Jan.

Abstract

The cis/trans conformational equilibrium of the two Ac-Pro isomers of the beta-turn model dipeptide [13C]-Ac-L-Pro-D-Ala-NHMe, 98% 13C enriched at the acetyl carbonyl atom, was investigated by the use of variable temperature gradient enhanced 1H-nmr, two-dimensional (2D) 1H,1H nuclear Overhauser effect spectroscopy (NOESY), 13C,1H one-dimensional steady-state intermolecular NOE, and molecular dynamics calculations. The temperature dependence of the cis/trans Ala(NH) protons are in the region expected for random-coil peptides in H2O (delta delta/delta T = -9.0 and -8.9 ppb for the cis and trans isomers, respectively). The trans NH(CH3) proton indicates smaller temperature dependence (delta delta/delta T approximately -4.8 ppb) than that of the cis isomer (-7.5 ppb). 2D 1H,1H NOESY experiments at 273 K demonstrate significant NOEs between ProH alpha-AlaNH and AlaNH-NH(R) for the trans isomer. The experimental NOE data, coupled with computational analysis, can be interpreted by assuming that the trans isomer most likely adopts an ensemble of folded conformations. The C-CONH(CH3) fragment exhibits significant conformational flexibility; however, a low-energy conformer resembles closely the beta II-turn folded conformations of the x-ray structure of the related model peptide trans-BuCO-L-Pro-Me-D-Ala-NHMe. On the contrary, the cis isomer adopts open conformations. Steady-state intermolecular solute-solvent (H2O) 13C,1H NOE indicates that the water accessibility of the acetyl carbonyl carbons is nearly the same for both isomers. This is consistent with rapid fluctuations of the conformational ensemble and the absence of a highly shielded acetyl oxygen from the bulk solvent. Variable temperature 1H-nmr studies of the cis/trans conformational equilibrium indicate that the trans form is enthalpically favored (delta H degree = -5.14 kJ mole-1) and entropically (delta S degree = -5.47 J.K-1.mole-1) disfavored relative to the cis form. This demonstrates that, in the absence of strongly stabilizing sequence-specific interresidue interactions involving side chains and/or charged terminal groups, the thermodynamic difference of the cis/trans isomers is due to the combined effect of intramolecular and intermolecular (hydration) induced conformational changes.

PubMed Disclaimer

Publication types

LinkOut - more resources