Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan;32(1):202-8.
doi: 10.1097/00005768-200001000-00030.

Monitoring strength training: neuromuscular and hormonal profile

Affiliations

Monitoring strength training: neuromuscular and hormonal profile

C Bosco et al. Med Sci Sports Exerc. 2000 Jan.

Abstract

Purpose: This study investigated changes induced by a single heavy resistance training session on neuromuscular and endocrine systems in trained athletes, using the same exercises for training and testing.

Methods: Five different groups volunteered: track and field male sprinters (MS, N = 6), track and field female sprinters (FS, N = 6), body builders (BB, N = 6), and weight lifters performing low-repetition exercise (WLL, N = 4) and high-repetition exercise (WLH, N = 4). In training, the work performed during half and full squat exercise was monitored for mechanical power output as well as EMG analysis on leg extensor muscles of the subjects belonging to the MS, FS, and BB groups. Just before and immediately after the training session, venous blood samples were obtained for RIA determination of testosterone (T), cortisol (C), lutropin (LH), human prolactin (PRL), and follitropin (FSH) in FS and MS. In the other three groups (BB, WLH, and WLL), the hormonal profile was limited to T and human growth hormone (hGH) only.

Results: After training the power developed in full squat demonstrated a statistically significant decrease (P < 0.01) in MS and no changes in FS. The EMG activity remained constant during the training session. Consequently, the EMG/Power ratio increased in both MS and FS, although only in MS a statistical significance was noted (P < 0.05). In MS immediately after the session the levels of C, T, and LH were significantly lower (P < 0.05). No changes were found in FS. In both groups and in BB significant negative correlation was found between changes in T level and EMG/Power ratio in half squat performance.

Conclusions: It is likely that adequate T level may compensate the effect of fatigue in FT fibers by ensuring a better neuromuscular efficiency.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources