Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;439(1-2):101-12.
doi: 10.1007/s004249900155.

Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion

Affiliations

Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion

J B Sørensen et al. Pflugers Arch. 1999 Dec.

Abstract

Frog skin glands were stripped of connective tissue and investigated using the nystatin-permeabilized whole-cell patch-clamp configuration. The membrane potential in unstimulated acinar cells was -69.5+/-0.7 mV, and the conductance was dominated by K+, based on ion substitution experiments. The cells were electrically coupled through heptanol- and halothane-sensitive gap junctions. During application of gap junction blockers, the whole-cell current/voltage relationship displayed strong outward rectification. Outward currents were blocked by barium. Stimulation by agonists known to cause increases in either cytosolic cAMP ([cAMP]c) (isoproterenol, prostaglandin E2, both at 2 microM) or free cellular Ca2+ concentration ([Ca2+]c) (noradrenaline, 10 microM, added with propranolol, 5 microM; carbachol, 100 microM) in the frog skin glands caused reversible depolarization: by 34+/-3 mV, 36+/-3 mV, 25+/-3 mV (plateau-phase), and 20+/-3 mV, respectively. Ion substitution experiments showed that stimulation through either pathway (cAMP or Ca2+) resulted in the activation of a Cl- conductance. Application of noradrenaline or adrenaline resulted in a faster depolarization (rates 22 mV/s, 26 mV/s) than stimulation by isoproterenol or prostaglandin E2 (5.6-5.7 mV/s). Cells that were depolarized by exposure to isoproterenol or prostaglandin E2 partially repolarized when stimulated by noradrenaline. The repolarization was blocked by Ba2+ (5 mM) or prazosine (1 microM), consistent with the activation of Ca(2+)-dependent K+ channels via alpha1-adrenergic receptors. We conclude that in the frog skin gland both Ca(2+)-dependent and cAMP-dependent Cl- channels are present in the apical membrane. Increases in free [Ca2+]c in the cAMP-stimulated gland results in the activation of K+ channels, thereby increasing the driving force for Cl- exit.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources