Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Feb;6(2):88-91.
doi: 10.1016/s1357-4310(99)01639-1.

Animal models for autoimmune demyelinating disorders of the nervous system

Affiliations
Review

Animal models for autoimmune demyelinating disorders of the nervous system

R Gold et al. Mol Med Today. 2000 Feb.

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that takes a relapsing-remitting or a progressive course (reviewed in Refs 1,2). Its counterpart in the peripheral nervous system (PNS) is chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) (reviewed in Ref. 3). In addition, there are acute, monophasic disorders, such as the inflammatory demyelinating polyradiculoneuropathy termed Guillain-Barré syndrome (GBS) in the PNS, and acute disseminated encephalomyelitis (ADEM) in the CNS. Both MS and GBS are heterogeneous syndromes. In MS different exogenous assaults together with genetic factors can result in a disease course that finally fulfils the diagnostic criteria. In both diseases, axonal damage can add to a primarily demyelinating lesion and cause permanent neurological deficits. No single animal model exists that mimics all the features of human demyelinating diseases; rather, the available models reflect specific facets. Here, we focus on experimental autoimmune encephalomyelitis (EAE) and neuritis (EAN) as models in rat and mouse strains, and discuss their distinct histopathology and the roles played by different autoantigens.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources