Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Feb 8;39(5):860-71.
doi: 10.1021/bi991937j.

Beta-sheet proteins with nearly identical structures have different folding intermediates

Affiliations
Comparative Study

Beta-sheet proteins with nearly identical structures have different folding intermediates

P M Dalessio et al. Biochemistry. .

Abstract

The folding mechanisms of two proteins in the family of intracellular lipid binding proteins, ileal lipid binding protein (ILBP) and intestinal fatty acid binding protein (IFABP), were examined. The structures of these all-beta-proteins are very similar, with 123 of the 127 amino acids of ILBP having backbone and C(beta) conformations nearly identical to those of 123 of the 131 residues of IFABP. Despite this structural similarity, the sequences of these proteins have diverged, with 23% sequence identity and an additional 16% sequence similarity. The folding process was completely reversible, and no significant concentrations of intermediates were observed by circular dichroism or fluorescence at equilibrium for either protein. ILBP was less stable than IFABP with a midpoint of 2. 9 M urea compared to 4.0 M urea for IFABP. Stopped-flow kinetic studies showed that both the folding and unfolding of these proteins were not monophasic, suggesting that either multiple paths or intermediate states were present during these processes. Proline isomerization is unlikely to be the cause of the multiphasic kinetics. ILBP had an intermediate state with molten globule-like spectral properties, whereas IFABP had an intermediate state with little if any secondary structure during folding and unfolding. Double-jump experiments showed that these intermediates appear to be on the folding path for each protein. The folding mechanisms of these proteins were markedly different, suggesting that the different sequences of these two proteins dictate different paths through the folding landscape to the same final structure.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources