Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;15(3):176-87.
doi: 10.1016/s0268-0033(99)00063-7.

Cruciate ligament forces in the human knee during rehabilitation exercises

Affiliations

Cruciate ligament forces in the human knee during rehabilitation exercises

D E Toutoungi et al. Clin Biomech (Bristol). 2000 Mar.

Abstract

Objective: To determine the cruciate ligament forces occurring during typical rehabilitation exercises.Design. A combination of non-invasive measurements with mathematical modelling of the lower limb.Background. Direct measurement of ligament forces has not yet been successful in vivo in humans. A promising alternative is to calculate the forces mathematically.

Methods: Sixteen subjects performed isometric and isokinetic or squat exercises while the external forces and limb kinematics were measured. Internal forces were calculated using a geometrical model of the lower limb and the "dynamically determinate one-sided constraint" analysis procedure.

Results: During isokinetic/isometric extension, peak anterior cruciate ligament forces, occurring at knee angles of 35-40 degrees, may reach 0.55x body-weight. Peak posterior cruciate ligament forces are lower and occur around 90 degrees. During isokinetic/isometric flexion, peak posterior cruciate forces, which occur around 90 degrees, may exceed 4x body-weight; the anterior cruciate is not loaded. During squats, the anterior cruciate is lightly loaded at knee angles up to 50 degrees, after which the posterior cruciate is loaded. Peak posterior cruciate forces occur near the lowest point of the squat and may reach 3.5x body-weight.

Conclusions: For anterior cruciate injuries, squats should be safer than isokinetic or isometric extension for quadriceps strengthening, though isokinetic or isometric flexion may safely be used for hamstrings strengthening. For posterior cruciate injuries, isokinetic extension at knee angles less than 70 degrees should be safe but isokinetic flexion and deep squats should be avoided until healing is well-advanced.

Relevance: Good rehabilitation is vital for a successful outcome to cruciate ligament injuries. Knowledge of ligament forces can aid the physician in the design of improved rehabilitation protocols.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources