Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight
- PMID: 10658024
- DOI: 10.1152/jappl.2000.88.2.567
Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight
Abstract
Soleus muscle fibers were examined electron microscopically from pre- and postflight biopsies of four astronauts orbited for 17 days during the Life and Microgravity Sciences Spacelab Mission (June 1996). Myofilament density and spacing were normalized to a 2. 4-microm sarcomere length. Thick filament density ( approximately 1, 062 filaments/microm(2)) and spacing ( approximately 32.5 nm) were unchanged by spaceflight. Preflight thin filament density (2, 976/microm(2)) decreased significantly (P < 0.01) to 2,215/microm(2) in the overlap A band region as a result of a 17% filament loss and a 9% increase in short filaments. Normal fibers had 13% short thin filaments. The 26% decrease in thin filaments is consistent with preliminary findings of a 14% increase in the myosin-to-actin ratio. Lower thin filament density was calculated to increase thick-to-thin filament spacing in vivo from 17 to 23 nm. Decreased density is postulated to promote earlier cross-bridge detachment and faster contraction velocity. Atrophic fibers may be more susceptible to sarcomere reloading damage, because force per thin filament is estimated to increase by 23%.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
