Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan;24(1):85-95.
doi: 10.1016/s0278-5846(99)00082-2.

Lithium chloride inhibits thrombin-induced intracellular calcium mobilization in C6 rat glioma cells

Affiliations

Lithium chloride inhibits thrombin-induced intracellular calcium mobilization in C6 rat glioma cells

A Kagaya et al. Prog Neuropsychopharmacol Biol Psychiatry. 2000 Jan.

Abstract

In this study, the authors have demonstrated the effect of lithium, a typical mood stabilizer, on thrombin-evoked Ca2+ mobilization in C6 cells to elucidate the action mechanisms of the drug. Thrombin-induced Ca2 mobilization was reduced 24 hr after 1 or 10 mM lithium chloride (LiCl) pretreatment. The Ca2+ rise was reduced in a time-dependent manner, and the significant inhibition was observed 9 hr pretreatment with 10 mM LiCl. On the other hand, pretreatment of the cells with 10 mM LiCl for 24 hr did not alter the amount of Galphaq/11 significantly. Pretreatment with 10 mM LiCl for 24 hr failed to reduce the 5-HT-induced Ca2+ mobilization or to affect the desensitization of the 5-HT signal. Finally, thrombin-elicited Ca2+ rise was markedly inhibited in the presence of 0.05 U/ml plasmin, however, the Ca2+ rise was not further attenuated in the presence of plasmin in C6 cells pretreated with LiCl for 24 hr. These results indicate that pretreatment with LiCl attenuated thrombin-evoked intracellular Ca2+ mobilization in plasmin sensitive manner in C6 rat glioma cells. Thus, it is important to investigate the effect of lithium on thrombin-induced cellular responses to clarify the action mechanism of lithium in relation to some abnormality in thrombin-evoked Ca2+ rise observed in bipolar disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources