Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 11;275(6):4417-21.
doi: 10.1074/jbc.275.6.4417.

Activated cardiac adenosine A(1) receptors translocate out of caveolae

Affiliations
Free article

Activated cardiac adenosine A(1) receptors translocate out of caveolae

R D Lasley et al. J Biol Chem. .
Free article

Abstract

The cardiac affects of the purine nucleoside, adenosine, are well known. Adenosine increases coronary blood flow, exerts direct negative chronotropic and dromotropic effects, and exerts indirect anti-adrenergic effects. These effects of adenosine are mediated via the activation of specific G protein-coupled receptors. There is increasing evidence that caveolae play a role in the compartmentalization of receptors and second messengers in the vicinity of the plasma membrane. Several reports demonstrate that G protein-coupled receptors redistribute to caveolae in response to receptor occupation. In this study, we tested the hypothesis that adenosine A(1) receptors would translocate to caveolae in the presence of agonists. Surprisingly, in unstimulated rat cardiac ventricular myocytes, 67 +/- 5% of adenosine A(1) receptors were isolated with caveolae. However, incubation with the adenosine A(1) receptor agonist 2-chlorocyclopentyladenosine induced the rapid translocation of the A(1) receptors from caveolae into non-caveolae plasma membrane, an effect that was blocked by the adenosine A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. An adenosine A(2a) receptor agonist did not alter the localization of A(1) receptors to caveolae. These data suggest that the translocation of A(1) receptors out of caveolae and away from compartmentalized signaling molecules may explain why activation of ventricular myocyte A(1) receptors are associated with few direct effects.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources