Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Dec;86(12):977-83.

[DNA-dependent protein kinase: a major protein involved in the cellular response to ionizing radiation]

[Article in French]
Affiliations
  • PMID: 10660692
Free article
Review

[DNA-dependent protein kinase: a major protein involved in the cellular response to ionizing radiation]

[Article in French]
C Muller et al. Bull Cancer. 1999 Dec.
Free article

Abstract

DNA-dependent protein kinase (DNA-PK) is a DNA-activated nuclear serine/threonine protein kinase. DNA-PK consists of a regulatory sub-unit, the heterodimeric Ku protein (composed of a 70- and a 86-kDa subunit) which binds DNA ends and targets the catalytic sub-unit, DNA-PKcs to DNA strand breaks. DNA-PK plays a major role in the repair of double-strand breaks induced in DNA after exposure to ionizing radiation as shown by the extreme radiosensitivity of cells with mutations in Ku86, Ku70 or DNA-PKcs genes. Cells deficient in DNA-PK activity also exhibit hypersensitivity to genotoxic drugs such as cisplatin and nitrogen mustards. In the first part of this review, the current knowledge on the biochemical characteristics of DNA-PK, its mechanism of action in DNA repair and the phenotype of DNA-PK deficient cells is summarized. These results suggest that DNA-PK might play a role in the acquisition of a resistant phenotype of human tumors to radiotherapy, chemotherapy using genotoxic drugs or to both treatments. In the second part of this review, the studies devoted to inhibition of DNA-PK in order to enhance cancer therapy by DNA-damaging agents are presented.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources