Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Jan;238(1):76-80.
doi: 10.1007/s004170050013.

Inhibition of membrane-bound carbonic anhydrase enhances subretinal fluid absorption and retinal adhesiveness

Affiliations
Comparative Study

Inhibition of membrane-bound carbonic anhydrase enhances subretinal fluid absorption and retinal adhesiveness

T J Wolfensberger et al. Graefes Arch Clin Exp Ophthalmol. 2000 Jan.

Abstract

Background: The clinical use of currently available carbonic anhydrase (CA) inhibitors is limited by systemic side-effects, thought to result from the inhibition of intracellular CA isoenzymes. This study investigates how benzolamide, a carbonic anhydrase inhibitor which does not readily penetrate cell membranes, modulates retinal pigment epithelium functions relative to acetazolamide, which diffuses into the cytosol.

Methods: Small retinal detachments were made in Dutch rabbits by injecting saline into the subretinal space. Detachment height was measured using a dual He-Ne beam YAG laser focusing system, and the fluid absorption rate was calculated before and after intravenous injections of saline, acetazolamide or benzolamide. Retinal adhesiveness was determined by peeling the retina from the RPE and measuring the amount of adherent pigment.

Results: The baseline fluid absorption rate of 0.04 microl/mm(2)/h was unchanged after injection of 0.9% NaCl or low-dose benzolamide (5 mg/kg). The absorption increased to about 0.14 microl/mm(2)/h after higher benzolamide doses (20-40 mg/kg) and to 0.13 microl/mm(2)/h after acetazolamide (20 mg/kg). Both acetazolamide and benzolamide significantly slowed the post-enucleation failure of retinal adhesiveness.

Conclusion: Since benzolamide had effects similar to acetazolamide, inhibition of membrane-bound CA appears to be sufficient to enhance subretinal fluid absorption and retinal adhesiveness. Membrane-specific CA inhibitors may therefore be of clinical value if they minimize side-effects from intracellular CA inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources