Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep;39(18):2987-98.
doi: 10.1016/s0042-6989(99)00030-9.

Quantitative estimations of foveal and extra-foveal retinal circuitry in humans

Affiliations
Free article

Quantitative estimations of foveal and extra-foveal retinal circuitry in humans

J Sjöstrand et al. Vision Res. 1999 Sep.
Free article

Abstract

For an understanding of the basis for psychophysical measurement of visual resolution, quantitative morphological studies of retinal neuronal architecture are needed. Here we report on cell densities and retinal ganglion cell:cone ratio (RGC:C) from the foveal border to the peripheral retina (34 degrees eccentricity). Quantitative estimates of RGC and C densities were made using a modified disector method in three vertically sectioned human retinae and were adjusted for RGC displacement. In agreement with our previous data on humans, we found an RGC:C ratio close to 3 at 2-3 degrees eccentricity. Outside the foveal border, the ratio declined to 1.0 at 7.5 degrees eccentricity and to 0.5 at eccentricities larger than 19 degrees. Center-to-center separation of C and RGC in addition to center-to-center separation of estimated 'receptive fields' was calculated at corresponding locations along the superior and inferior hemimeridians. The center-to-center separation of estimated 'receptive fields' was found to be more closely related to resolution thresholds from the fovea to 19 degrees eccentricity than was the separation of RGC and C. On the basis of these quantitative estimates, models for neural circuitry involved in central and peripheral spatial vision can be discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources