Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Dec;84(3):367-88.
doi: 10.1016/s0163-7258(99)00042-x.

Unusual transcriptional and translational regulation of the bacteriophage Mu mom operon

Affiliations
Free article
Review

Unusual transcriptional and translational regulation of the bacteriophage Mu mom operon

S Hattman. Pharmacol Ther. 1999 Dec.
Free article

Abstract

The bacteriophage Mu mom gene encodes a novel DNA modification that protects the viral genome against a wide variety of restriction endonucleases. Expression of mom is subject to a series of unusual regulatory controls. Transcription requires the action of a phage-encoded protein, C, which binds (probably as a dimer) the mom promoter from -33 to -52 (with respect to the transcription start site) in two adjacent DNA major grooves on one face of the helix. No apparent direct interaction between C and the host RNA polymerase (RNAP) is evident; however, C binding alters mom DNA conformation. In the absence of C, RNAP binds the mom promoter at a site that results in transcription in a direction away from the mom gene. The function of this transcription is unknown. An additional layer of transcriptional regulation complexity is due to the fact that the host Dam DNA-(N6-adenine)methyltransferase is required. Dam methylation of three closely spaced upstream GATC sequences is necessary to prevent binding by the host protein, OxyR, which acts as a repressor. Repression is not mediated by inhibition of C binding, but rather through interference with C-mediated recruitment of RNAP to the correct site. Translation of mom is regulated by the phage Com protein. Com is only 62 amino acids long and contains a zinc finger-like structure (coordinated by four cysteine residues) in the amino terminal domain. Com binds mom mRNA 5' to the mom open reading frame, whose translation start signals are contained in a stem-loop translation-inhibition-structure. Com binding to its target site (5' to and adjacent to the translation-inhibition-structure) results in a stable change in RNA secondary structure that exposes the translation start signals.

PubMed Disclaimer

Publication types

LinkOut - more resources