Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;278(2):H412-9.
doi: 10.1152/ajpheart.2000.278.2.H412.

Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects

Affiliations
Free article

Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects

J C Tardiff et al. Am J Physiol Heart Circ Physiol. 2000 Feb.
Free article

Abstract

Alpha- and beta-myosin heavy chain (MHC), the two MHC isoforms expressed in the mammalian heart, differ quantitatively in their enzymatic activities. The MHC composition of the heart can change dramatically in response to numerous stimuli, leading to the hypothesis that changes in cardiac function can be caused by myosin isoform shifts. However, this hypothesis has remained unproven because the stimuli used to generate these shifts are complex and accompanied by many additional physiological changes, including alterations in cardiac mass and geometry. Adult mouse ventricles normally express only alpha-MHC (the faster motor). To determine whether genetic alteration of the MHC isoform composition in the adult mouse heart would result in changes in cardiac chamber mass and contractility, we established transgenic mouse lines that express a Myc-tagged beta-MHC molecule (the slower motor) in adult ventricular tissue, one of which expresses 12% of its myosin as the transgene. There is no evidence of hypertrophy, induction of hypertrophic markers, and no histopathology. Myofibrillar Ca(2+)-activated ATPase activity is decreased by 23%, and Langendorff preparations demonstrate a significant 15% decrease in systolic function in transgenic hearts. These results suggest that even small shifts in the myosin isoform composition of the myocardium can result in physiologically significant changes in cardiac contractility and could be relevant to cardiovascular disease.

PubMed Disclaimer

Publication types

LinkOut - more resources