Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;278(2):L365-73.
doi: 10.1152/ajplung.2000.278.2.L365.

Pulmonary-specific expression of SP-D corrects pulmonary lipid accumulation in SP-D gene-targeted mice

Affiliations
Free article

Pulmonary-specific expression of SP-D corrects pulmonary lipid accumulation in SP-D gene-targeted mice

J H Fisher et al. Am J Physiol Lung Cell Mol Physiol. 2000 Feb.
Free article

Abstract

Targeted disruption of the surfactant protein (SP) D (SP-D) gene caused a marked pulmonary lipoidosis characterized by increased alveolar lung phospholipids, demonstrating a previously unexpected role for SP-D in surfactant homeostasis. In the present study, we tested whether the local production of SP-D in the lung influenced surfactant content in SP-D-deficient [SP-D(-/-)] and SP-D wild-type [SP-D(+/+)] mice. Rat SP-D (rSP-D) was expressed under control of the human SP-C promoter, producing rSP-D, SP-D(+/+) transgenic mice. SP-D content in bronchoalveolar lavage fluid was increased 30- to 50-fold in the rSP-D, SP-D(+/+) mice compared with the SP-D(+/+) parental strain. Lung morphology, phospholipid content, and surfactant protein mRNAs were unaltered by the increased concentration of SP-D. Likewise, the production of endogenous mouse SP-D mRNA was not perturbed by the SP-D transgene. rSP-D, SP-D(+/+) mice were bred to SP-D(-/-) mice to assess whether lung-selective expression of SP-D might correct lipid homeostasis abnormalities in the SP-D(-/-) mice. Selective expression of SP-D in the respiratory epithelium had no adverse effects on lung function, correcting surfactant phospholipid content and decreasing phosphatidylcholine incorporation significantly. SP-D regulates surfactant lipid homeostasis, functioning locally to inhibit surfactant phospholipid incorporation in the lung parenchyma and maintaining alveolar phospholipid content in the alveolus. Marked increases in biologically active tissue and alveolar SP-D do not alter lung morphology, macrophage abundance or structure, or surfactant accumulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources