Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;81(4):375-80.
doi: 10.1254/jjp.81.375.

Endogenous ATP released by electrical field stimulation causes contraction via P2x- and P2y-purinoceptors in the isolated tail artery of rats

Affiliations
Free article

Endogenous ATP released by electrical field stimulation causes contraction via P2x- and P2y-purinoceptors in the isolated tail artery of rats

A Fukumitsu et al. Jpn J Pharmacol. 1999 Dec.
Free article

Abstract

Electrical field stimulation (EFS) caused contraction of isolated tail arteries of rats. The EFS-induced contraction showed frequency-dependence and was entirely abolished by the sodium channel blocker tetrodotoxin (1 x 10(-7) M). The EFS-induced (at 20 Hz) contraction was reduced by about 60% in the presence of phentolamine (1 x 10(-6) M). Therefore, later experiments were carried out in the presence of phentolamine. Pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (1 x 10(-8)-1 x 10(-6) M) and basilen blue E-3G (3 x 10(-5)-5 x 10(-5) M), P2-receptor antagonists, significantly inhibited the contraction evoked by EFS. In addition, PPADS significantly inhibited the contractions induced by ATP (1 x 10(-4) M) and a selective P2x-receptor agonist, alpha,beta-methylene ATP (1 x 10(-6) M). In contrast, basilen blue E-3G did not inhibit alpha,beta-methylene ATP-induced contraction. The ecto-ATPase activator apyrase (5 and 10 U/ml) significantly reduced the EFS-induced contractions. These findings suggest that endogenous ATP released by EFS causes contractions of rat tail artery via both the P2x-receptors and P2y-receptors.

PubMed Disclaimer

Publication types

MeSH terms

Substances