Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Feb;181(2):664-70.
doi: 10.1086/315239.

Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice

Affiliations
Comparative Study

Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice

X Zhang et al. J Infect Dis. 2000 Feb.

Abstract

Shiga toxin-producing Escherichia coli (STEC) cause significant disease; treatment is supportive and antibiotic use is controversial. Ciprofloxacin but not fosfomycin causes Shiga toxin-encoding bacteriophage induction and enhanced Shiga toxin (Stx) production from E. coli O157:H7 in vitro. The potential clinical relevance of this was examined in mice colonized with E. coli O157:H7 and given either ciprofloxacin or fosfomycin. Both antibiotics caused a reduction in fecal STEC. However, animals treated with ciprofloxacin had a marked increase in free fecal Stx, associated with death in two-thirds of the mice, whereas fosfomycin did not. Experiments that used a kanamycin-marked Stx2 prophage demonstrated that ciprofloxacin, but not fosfomycin, caused enhanced intraintestinal transfer of Stx2 prophage from one E. coli to another. These observations suggest that treatment of human STEC infection with bacteriophage-inducing antibiotics, such as fluoroquinolones, may have significant adverse clinical consequences and that fluoroquinolone antibiotics may enhance the movement of virulence factors in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms