Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 18;275(7):4693-8.
doi: 10.1074/jbc.275.7.4693.

Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy

Affiliations
Free article

Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy

S V Naga Prasad et al. J Biol Chem. .
Free article

Abstract

Activation of phosphoinositide 3-kinases is coupled to both phosphotyrosine/growth factor and G protein-coupled receptors. We explored the role of phosphoinositide 3-kinase activation in myocardium during in vivo pressure overload hypertrophy in mice. Cytosolic extracts from wild type hypertrophied hearts showed a selective increase in the phosphoinositide 3-kinase gamma isoform. To address the role of G protein-coupled receptor-mediated activation of phosphoinositide 3-kinase, we used transgenic mice with cardiac-specific overexpression of a Gbetagamma sequestering peptide. Extracts from hypertrophied transgenic hearts showed complete loss of phosphoinositide 3-kinase activation, indicating a Gbetagamma-dependent process. To determine the class of G proteins that contribute Gbetagamma dimers for in vivo phosphoinositide 3-kinase activation, two strategies were used: 1) transgenic mice with cardiac-specific overexpression of a G(q) inhibitor peptide and 2) pertussis toxin treatment prior to pressure overload in wild type mice. Pressure overloaded G(q) inhibitor transgenic mice showed a complete absence of phosphoinositide 3-kinase activation, whereas pretreatment with pertussis toxin showed robust phosphoinositide 3-kinase activation. Taken together, these data demonstrate that activation of the phosphoinositide 3-kinase during in vivo pressure overload hypertrophy is Gbetagamma-dependent and the Gbetagamma dimers arise from stimulation of G(q)-coupled receptors.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources