GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC
- PMID: 10678765
- DOI: 10.1016/s0006-8993(99)02184-8
GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC
Abstract
The purpose of the present study was to identify and localize glutathione (GSH) transport in an in vitro tissue culture model of blood-brain barrier (BBB). The localization of Na+-dependent GSH transport in an immortalized cell line of human cerebrovascular endothelial cells (HCEC) and asymmetry of transport in Transwell studies were investigated. Initial studies with cultured HCEC established a significant (45%) Na+-dependency for GSH uptake in cultured HCEC pretreated with acivicin, an inhibitor of gamma-glutamyltranspeptidase (GGT). Transendothelial electrical resistance (TEER) and uptake of [35S]GSH from luminal and abluminal fluids of HCEC were measured in Na+-containing and Na+-free (choline chloride) buffers using cells grown on gelatin-coated membrane filters. TEER of HCEC monolayers in regular medium was 40.1 +/- 8.0 ohms cm2. Human astrocyte-conditioned medium (ACM) caused no change in TEER, but increased GGT activity approximately threefold when measured in cell lysates. Luminal and abluminal GSH uptake increased in a time-dependent fashion and were not affected by inhibition of GGT activity with acivicin. Sodium dependency was only observed for luminal uptake (Na+-containing 2.41 +/- 0.15 vs. Na+-free 0.96 +/- 0.03 pmol/30 min/million cells, p < 0.001) but not for abluminal uptake (1.02 +/- 0.13 vs. 1.11 +/- 09, p > 0.05). Apparent efflux via the luminal membrane was lower in the presence of sodium as compared to that without sodium, further suggesting that a Na+-dependent uptake process for GSH is operative at this membrane. GSH uptake and efflux were also demonstrated in neonatal rat and fetal human astrocytes, both exhibiting partial Na+-dependency of uptake. In conclusion, our results show for the first time, that HCEC and astrocytes take up GSH by both Na+-dependent and -independent mechanisms. The Na+-dependent GSH transport process in HCEC appears to be localized to luminal plasma membranes of HCEC.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
